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SUMMARY 

This paper reviews past and current efforts in developing a simple but robust turbulence model for free shear 
flows. Much of this work has been published previously and this paper is a rearrangement aimed at the 
conference. The model is presented and is interfaced with FIDAP to solve three-dimensional flows and a 
pusher-prop configuration. The eight-node brick, the penalty formulation and the Broyden method are 
used to solve the Navier-Stokes equations. The propeller is modelled as an actuator disc and the direct 
simulation of a given propeller is considered in detail. Good results are obtained for the square jet. For 
propeller cases detailed comparison with wind tunnel measurements shows excellent prediction of the 
velocity and pressure for flows of this complexity. 
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INTRODUCTION 

Detailed analysis of the three-dimensional flow produced by propeller-body combinations is of 
interest for a number of practical applications and scientific issues. Examples include the influence 
of the propeller on the body pressure distribution, the prediction of the near-wake profile, cyclic 
loading that produces vibrations and the influence of a downstream surface on a propeller and 
vice versa. The scientific issues mainly concern the nature of turbulence and turbulence modelling 
for such flows, 3D grid generation and numerical methods for the full, 3D, Reynolds-averaged 
Navier-Stokes equations. This paper focuses on the turbulence modelling and the numerical 
aspects of the solution process. 

Until recently only approximate analytical or numerical treatments of propeller flowfields were 
available involving one or more of the following very restrictive assumptions: the flow was 
assumed inviscid or laminar; the propeller was represented as an actuator disc with constant 
thrust and torque over the disc area; the effects of the propeller on the flowfield were assumed 
small enough to permit linearization of the equations of motion. References 1-8 are representative. 
Some workers have suggested the use of parabolic formulations, but that seems questionable as a 
result of the well known ‘upstream influence’ of propellers which implies an elliptic mathematical 
behaviour. 

The numerical procedure reported in References 9 and 10 had as its goal the development of a 
realistic treatment, keeping simplifying assumptions and approximations to a minimum. The 
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work was based on the full, unsteady, Reynolds-averaged Navier-Stokes equations. To place 
some bounds on the scope of the effort at the time, however, some simplifications were necessary. 
The first was the assumption of an actuator disc model for the propeller, although arbitrary radial 
variations of thrust and torque were allowed. Secondly, the flow was taken as axisymmetric. 
Thirdly, turbulent transport processes were described by an integrated, turbulence kinetic energy 
(TKE) model, which was used to predict an eddy viscosity. The unsteady equations of motion were 
cast in terms of a streamfunction, one vorticity component and the peripheral velocity. The 
equations were solved by an AD1 finite difference method. Comparison of the predictions with the 
laboratory data showed good agreement for the axial velocity. The swirl predictions were 
consistently low. 

For applications to problems of practical interest the most severe limitation to the analysis 
described above was its restriction to two-dimensional axisymmetric flows. Actual propeller- 
driven vehicles have either a three-dimensional body near the propeller and/or appendages that 
render the flow three-dimensional. For many cases the assumption of an actuator disc represen- 
tation of the propeller remains appropriate while the restriction to axisymmetric flow does not. 
Furthermore, the jump to trying to treat the viscous, three-dimensional, .cyclically unsteady 
problem with individual blades and their boundary layers is too great to attempt in one step at this 
time. 

The present work is part of a step-by-step approach to the development of a computational 
method for the analysis of propeller flowfields with three-dimensional inflows and the effect of hull 
and appendages in configurations of increasing complexity and realism. The fully elliptic, 3D, 
time-averaged, steady Navier-Stokes equations are solved with FIDAP by a penalty finite 
element method. This approach allows for ease of handling complex geometries and a variety of 
boundary conditions. Turbulence modelling is done through generalizations of the integrated 
TKE model of References 9-1 1. 

ANALYSIS 

Equations of motion 

The Boussinesq form of the time-averaged Navier-Stokes equations is given by 

u , , i  = 0, (1) 

(2) P u j u i , j  = - p , i  + Pfi+ [ p T ( u l , j +  u j , i l , j ?  

where pT is a turbulent eddy viscosity andfi are local body forces that will model the effects of the 
propeller and screen disc. 

Turbulence model 

A good turbulence model should respond to all important flow processes anticipated, but it 
should not complicate the mathematical formulation nor burden the computational task more 
than is absolutely necessary. This last point is especially important for large-scale, three- 
dimensional simulations. 

The starting point for the development of the present model is the transport equation for the 
turbulence kinetic energy model:12 

U i k , '  = (vT/oT k , i ) , i +  v T ( U i , j +  Vj,,) ~ i , j - ~ .  

Summation over repeated indices is implied; the comma denotes partial differentiation. In this 
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equatioq vT is the kinematic eddy viscosity, oT is a turbulence ‘Prandtl’ number and E is the viscous 
dissipation of turbulence. This equation is the high-Reynolds-number form of the TKE equation; 
it is suitable for the present application since there are no solid walls in the computational domain. 
The left-hand side represents convection of k,  while the first, second and third terms on the right- 
hand side represent diffusion, production and viscous dissipation respectively. 

For the flows considered in this study, the fully elliptic form of the TKE equation is not required. 
Indeed, a parabolized form is sufficient since it is expected that the turbulence level at one point 
will not be significantly affected by turbulence levels at the points located further downstream. The 
parabolized form of the TKE equation is obtained by neglecting streamwise diffusion, production 
due to normal turbulent stresses and terms involving streamwise or x-derivatives. Thus we have 

Following References 9 and 10, an integrated form of this last equation is obtained by integrating 
it over the cross-sectional y-z plane normal to the primary direction of the flow. Application of the 
divergence theorem to the second and third terms on the left-hand side and to the diffusion terms 
on the right-hand side makes them formally disappear upon integration if k and its crossflow 
partial derivatives vanish laterally in the far field. After some algebraic manipulations, the TKE 
equation reads 

In order to close the model, the TKE is related to the eddy viscosity by the Prandtl- 
Kolmogorov relationship: 

pT = pvT = c2 k1I2 L. (4) 
As usual’, one takes 

E = a, k3I2/L, (5 )  

where L is a length scale of the shear layer and a, and c2 are constants. Physically the flow field 
variables are sufficiently well behaved to ensure boundedness of the integrals in equation (3). The 
assumption that the eddy viscosity is constant over the cross-section of the flow is a well 
documented behaviour for free shear flows. In fact, close scrutiny of the available experimental 
data reveals that the eddy viscosity is constant over most of the cross-section of the shear layer and 
decays to zero only as the radial distance I from the x-axis goes to infinity. To preserve this 
behaviour and ensure boundedness of the integrals in the modelled integrated equation, a 
distribution function y, representing the distribution of the eddy viscosity across the layer, is 
introduced. The following equation (whose functional form was suggested in Reference 13), 
obtained from a non-linear least-squares fit to intermittency data for a turbulent boundary layer 
over a flat plate and turbulent round and planar  jet^,'^.'^ was found to be satisfactory: 

Y = YyYz, 

y, = 0-5[1 -erf(1.98 Y/YII2 -3 .42 ) ] ,  

yz = 0-5 [l -erf(1.98Z/Zl,,-3.42)]. 

where 

The half-widths are defined by the points on the Y- and Z-axes where 

(U - V,)/(V - u, ),, = 0 5 .  
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In this expression U ,  is the free stream approach flow velocity, which can be non-uniform. It 
should be noted that the particular form of the distribution is not critical. Its purpose is to ensure 
boundedness of the integrals. Choosing different forms results in slightly different values of thk 
constants u2 and c2 when the model is calibrated.15 This will not affect the performance of the 
turbulence model.' 

Upon substitution of equations (4) and (5 )  into equation (3) the modelled integrated TKE 
equation becomes 

d v , / ~ x  = 0 5  (Y2 - VT dYl/dx -- V: Y3)/Yl, (7) 
where 

P P  

Y3 = JJA (yu2/c:L4) dA. 

Following Reference 16 

This choice for the length scale ensures correct dependence for both limiting cases of planar and 
axisymmetric jet flows.16 This is crucial for three-dimensional jet flows since both regimes are 
present. 

Equation (7) is an initial value problem for the eddy viscosity. The only data required to solve 
equation (7) is an initial condition for the eddy viscosity, a value that can easily be estimated for 
most flows. A significant advantage of the present model is the absence of the diffusion of TKE, a 
very difficult term to model. 

The model was ~a l ib ra t ed '~  on the simple, well documented turbulent flow problem of the far 
field of a round jet issuing into still surroundings. This flow has an analytical solution for the 
velocity field and the eddy viscosity is a known constant." The integrals are evaluated exactly and 
with the assumption of turbulence equilibrium the constants are determined to be 

u2 = 0519, c2 = 0.154. 

These values of the constant are expected to be valid for propeller flows since the turbulence in 
such flows is very similar to that of round jets.14 

SOLUTION ALGORITHM 

The turbulence model was programmed and interfaced with the general purpose finite element 
program FIDAP for incompressible flows. 

Interfacing the turbulence model with FIDAP 

One of the goals during the FORTRAN implementation of the turbulence model was to 
minimize the number of patches that had to be made on FIDAP. One must recall that this work 
started in 1981 while FIDAP was at version 0.0 of its commercial life! Several updates and 
revisions were expected to follow at a relatively quick pace, and since our goal was to solve 
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turbulent free shear flows, minimization of the programming task to follow the changes of FIDAP 
was of prime importance. 

The turbulence model was programmed as a separate set of subroutines. The driving routine 
EDDY3D controls all phases of the turbulence model solution process: input of the various 
control parameters for the model, input of the topology of the cross-section of the flowfields, 
computation of the various integrals, interpolation and differentiation of the integral coefficient 
and solution of the ODE problem. 

Integrals in equations (8x10) are evaluated with the finite element methodology. A cross- 
section of the mesh is represented by surface elements and integrals over elements of a section are 
summed. Element integrals are evaluated using Gaussian integration. 

The length scales are computed by extracting the velocity field on each side of the Y- and Z-axes 
at each station, computing the velocity defect equation (6) on each axis and performing an inverse 
interpolation to find the point defined by equation (6). 

The ODE problem of equation (7) is solved using the subroutine DVERK from the IMSL 
library. Since DVERK requires evaluation of the right-hand side of equation (7) at axial locations 
other than those defined by the grid, the values of the integrals were spline fitted for easy 
interpolation and differentiation by the IMSL cubic spline routines. 

All arrays for the integrals, their spline representation and work arrays were stored in named 
commons independent of FIDAP's organization. It should be noted that for solving the 
turbulence model one must have access to the global velocity field and nodal co-ordinates. Scratch 
space had to be allocated to recover FIDAP's arrays IDE(i,j) of equation numbers, X ,  Y and Z of 
co-ordinates and arrays for the three velocity component nodal vectors U, V, W. This space had to 
be allocated separately in a named common, since when the turbulence subroutine is first called, 
FIDAP has already entered its own equation-solving phase and no memory is available in the 
blank common. 

With this approach only two subroutines of FIDAP had to be modified. First, a call to 
EDDY 3D was inserted in FIDAP's routine ELRESF which computes element stiffness matrices, 
residuals and forces. Secondly, the routine VS3MDL to compute the fluid viscosity at the 
Gaussian points was modified to include interpolation from the eddy viscosity data provided by 
EDDY3D. The information is extracted from the appropriate commons and IMSL routines are 
used to perform the interpolation. 

These modifications were implemented so as to preserve all the built-in flexibility offered by the 
FIDAP package. Mixed and penalty formulations can be used. Steady and transient analyses are 
possible with explicit and implicit integrators. All non-linear equation solvers can be used 
(successive substitution, Newton-Raphson and quasi-Newton). 

General solution procedure 

For reasons of economy, the equations of motion are discretized in a penalty formulation with 
an eight-noded brick with trilinear velocity and discontinuous piecewise constant pressure. 
Details of the penalty Galerkin formulation can be found in the FIDAP users' manual. While this 
element, under certain circumstances, may suffer from spurious pressure solutions, our experience 
indicates that it is a robust and reliable element for the problems treated here. 

The resulting system of non-linear equations is solved by the quasi-Newton method with 
Broyden updata. The user of this solver resulted in substantial computational savings for a given 
tolerance of the global iteration scheme. The following iteration strategy was found to be suitable: 
starting from a first guess of the velocity field (usually an axisymmetric solution, also obtained 
with FIDAP), the quasi-Newton method is used to iterate until convergence. The eddy viscosity 
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distribution is updated at each iteration by solving equation (6) using the current velocity field 
distribution to evaluate the coefficients of the ODE. 

The resulting code can simulate planar, axisymmetric and three-dimensional turbulent free 
shear flows. 

Non-dimensionalization 

All calculations were performed with a non-dimensional form of the equations of motion. 
Reference values are selected for the velocity U ,  and pressure Po to obtain the following 
dimensionless variables (the star denotes a dimensional variable): 

xi = Xf/L,, ui = u:/u;:, P=(P*-P;: ) / (p*U;:Z) ,  

PT 2 P'T/(p*u;: L,*)> f =f */(u,*z/L$) ,  p = p*/p,* = 1* 

RESULTS AND DISCUSSION 

The square jet" 

This is a good first test case for the present model. Although the flow is truly three-dimensional, 
the far field of the square jet reverts to that of a round jet (on which the turbulence model was 
calibrated) into still surroundings and the numerical solution in that region should be very close to 
that of the round jet. 

The equations of motion were non-dimensionalized with the jet velocity at the lips (50 ft s-  ') 
and the nozzle half-width (0.25 in). A grid of eight-noded brick elements was used to model one 
quarter of the jet; see Figure 1. It has 14 elements in the axial direction and 10 elements in the y- 
and z-directions. The experimental values of the axial velocity component from Reference 19 are 
used in the nozzle; the transverse velocity components are set to zero. A no-slip condition is used 
along the wall and symmetry is enforced on the (x, y) an (x, z )  planes of symmetry. On the free 
boundaries U is set to zero and the two remaining components of the traction are set to zero. At 
the outflow all tractions are set to zero. 

A value of the eddy viscosity is needed to initialize the ordinary differential equation governing 
the eddy viscosity distribution. This is obtained from a simple analysis for jets." Throughout the 
potential coreZo this analysis yields 

VT = 0.0137 Ujet X, 

where Ujet is the jet exit velocity and x is the distance from the lips of the jet. The extent of the 
potential core may be estimated with the following f~rmula : '~  

x,*/D = 2.13 

where xr is the length of the potential core, D is the hydraulic diameter of the jet and Re, is the 
Reynolds number based on the jet diameter and the exit velocity. The above formula gives the 
distribution of the eddy viscosity throughout the potential core of the jet. The value computed at 
x, is used to initialize the integrated turbulence model which is then used to compute the 
distribution of eddy viscosity from the end of the potential core to the outflow boundary of the 
domain. 

Figure 2 presents the dimensionless eddy viscosity distribution as a function of x. The initial 
linear segment corresponds to the potential core approximation. From there on the high velocity 
gradients cause high production levels in the integrated TKE model, resulting in a rapid increase 
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Figure 1. Finite element mesh for the square jet 
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Figure 2. Eddy viscosity tor the square jet 
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of the eddy viscosity downstream of the potential core. The eddy viscosity then tends asymp- 
totically to the analytical value for the round jet, as expected.” Far enough downstream of the jet 
lips, all jets of non-circular section tend towards the round jet far-field behaviour. For the present 
simulation the domain does not extend far enough downstream to allow the jet to revert 
completely to the axisymmetric regime. 

Figure 3 compares the predicted and experimental centreline velocity distributions. Agreement 
with the data is excellent. Figure 4 illustrates the predicted and experimental half-width of the jet. 
The near-field values are not quite constant, as one would expect. This is probably due to the use of 
a one-layer model, a rather crude approximation for the complicated flow near the lips of the jet. 

Figure 5 presents pressure contour plots at two axial stations. They clearly illustrate the three- 
dimensional nature of the flow and the transition to round jet behaviour far downstream. The top 
plot is taken at  x/b,  = 1.85, close to the lips of the jet. The sharp corners in the pressure contours 
clearly indicate the effect of the shape of the jet lips on the near field. The bottom plot, taken at 
x /b ,  = 27, shows an almost perfectly axisymmetric pressure field, characteristic of the round jet. 
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Figure 3. Centreline velocity for the square jet 
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Figure 4. Half-width for the square jet 
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Figure 5. Pressure contours for the square jet 

Flow past free running propellers" 

uniform flow and a shear flow. 
In this section we consider the flow past a propeller in a free stream. Two cases are considered: a 
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Modelling of the propeller. The propeller is modelled by an actuator disc of radius equal to that 
of the propeller and of thickness roughly equal to the physical thickness of the propeller. The 
thrust and torque are allowed to vary in the radial direction but are constant in the periphiral 
direction. Little is known about thrust and torque distributions for a given propeller. For 
simplicity a simple trapezoidal distribution is used: 

t(r) = 0, 

t(r)  = tm 9 

r in [lo, r l l ,  

r in Crz, r31, 

t(r)= tm(r-r1)/(rz-r1) ,  in Cr1,r21, 

t(r)  = t,(R - r)/(r - r , ) ,  r in [ r , ,  R ] ,  

where t ,  is the maximum value of the thrust and R is the radius of the propeller. Values of r I ,  r z  
and 1, were set to 0*25R, 0.7R and 045R respectively. These result in distributions similar to those 
predicted by simple propeller performance analysis. The same form is adopted for the distribution 
of the forces producing swirl. Its maximum value is denoted by s,. The thickness of the propeller in 
this case is 0041 propeller diameters. These distributions are integrated over the volume of the 
propeller to yield the global thrust and torque of the propeller: 

T= 03075 x 2n x Rz x t,, 
Q = 02218 x 271 x R3 x s ~ .  

Given values of T and Q, t ,  and s, are computed, thus completing the definition of thrust and 
torque distributions. 

Initial value of the eddy viscosity. The flow upstream of the propeller is undisturbed because 
there are no solid walls nor aftbody present. This makes the determination of the initial value of 
the eddy viscosity by classical boundary layer theory impossible. In References 9 and 10 and ad 
hoc procedure was used to initialize the turbulence model, but the authors stressed the need for a 
procedure based on sounder physical principles. 

The flow through and past propellers has many of the characteristics of a turbulent jet or wake 
behind a streamlined Hence an indication of the magnitude of the eddy viscosity can be 
obtained from a classical formula for jets: 

vT = 0.025 rljZ AU, 

where rl,z is the half-width of the jet and can be taken here as rl,z = R, the radius of the propeller 
(numerical experiments confirmed the validity of this assumption), and AU is the characteristic 
velocity excess. 

A simplified one-dimensional analysis of inviscid flow past propellersz2 provides an estimate of 
this velocity excess. Figure 6 illustrates a propeller, with projected area A,  immersed in a fluid with 
uniform velocity Vl. The speed of the fluid increases from V ,  to V, within the slipstream 
boundary. The relationship between thrust and velocity can be obtained from a momentum 
balance on the control volume S , :  

T = A ( p , - P , ) ,  
where p z  and p 3  are the pressures at points 2 and 3; see Figure 6. Bernoulli’s equation is not valid 
between points 1 and 2; however, it is applicable between points 1 and 2, and between 3 and 4. If 
points 1 and 4 are far away from the propeller, one can assume that p 1  = p4 and write 

T = p( V: - V:)A/2  
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Figure 6. Simplified one-dimensional propeller analysis 

or 

V, = (2T/pA + V:)1’2 

and the velocity excess is finally given by 

AU = V4-  V,. 

The following data apply to the uniform flow case treated in Reference 23: 

R* = 0.246 m, 
U,* = 8 5 2  m s - l ,  

A* = 0.19 m2, 
p* = 1.177 kg mP3, 

T* = 2.914 N, 

yielding 

and a rough estimate of the eddy viscosity downstream of the propeller of 

AU* = 1.41 m s - l  

or in dimensionless form 
v; = 0.0087 m2 s - l  

VT = 0.002. 

Upstream of the propeller the flow is nearly uniform and velocity gradients are small. Hence one 
expects the eddy viscosity to be nearly constant and small with respect to its value downstream. At 
some point just upstream of the propeller the velocity gradients becomes significant and the 
production of TKE increases, causing a smooth increase of the eddy viscosity through and past the 
propeller. The eddy viscosity continues its increase behind the propeller because pressure 
relaxation enhances the acceleration of the fluid. At some point downstream viscous dissipation 
causes stabilization of the value of the eddy viscosity. 

There remains to select an initial value for the eddy viscosity. Obviously the initial value must be 
much smaller than found downstream. Assuming that the Prandtl-Kolmogorov relationship 
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holds we have 

Choosing r I j 2  = R, c = 0.2 from the jet value and k = 0.01 U i  from Reference 23 we get the 
following estimate for the dimensionless initial eddy viscosity 

VT = c k1!2r1!2. 

VTO = 0-001. 

To assess the validity of this analysis and the effect of the initial value of the eddy viscosity, 
axisymmetric simulations without swirl were performed on the uniform flow case of Reference 23. 
A mesh of quadratic elements extends from 4 diameters upstream of the propeller to 14 diameters 
downstream. In the radial direction it covers the region from the axis to 1.2 diameters in the free 
stream. This grid was obtained after several trials to ensure grid-independent solutions. All 
variables were non-dimensionalized with respect to the propeller diameter and the uniform 
upstream approach velocity. Uniform flow is enforced at the upstream boundary by setting U = 1 
and Y =  0. Symmetry is applied on the axis. On the free stream boundary U = 1 and the radial 
traction is set to zero. At the outflow both traction components vanish (Figure 7). 

In all calculations the eddy viscosity solver was turned on at the first axial station where the 
maximum velocity excess was larger than 3% of the approach velocity. Figure 8 shows the 
distribution of eddy viscosity for various initial values in the range Values 
in the range to lop3 produce similar distributions with a peak value of 04025, a value in 
excellent agreement with the rough estimate of 0.002. The model is quite robust, since even for 
initial values that are not small compared with the downstream value, it tends to bring the eddy 
viscosity towards the value expected from the simple analysis. 

was judged adequate. Simulations were performed with smaller 
initial values with little effect on the velocity and pressure fields. 

to 4 x 

An initial value of 5 x 

u = l  

v = o  

I f x = 0 V  = o  0 t I -4  

t x  = 0 

tr = 0 

I 
t x = O v  = o  12 

/ 

Figure 7. Mesh for tests on initial value of vT 
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Uniform flow past a propeller." The characteristics of the flow 

U ;  = 8.53 m s - l ,  p3 = 1.197 kg mW3. 

The grid is a cylinder with 24 nodes in the axial direction, 14 radial nodes and 12 peripheral 
planes (see Figure 9). The inflow is located 2 diameters upstream of the propeller and the outflow 
at 3 diameters downstream. The free stream boundary is a shell of radius equal to 1.2 propeller 
diameters. 

At the inflow U is set to one and Vand Ware set to zero. On the free stream shell U is set to one 
and the y and z tractions to zero. The three tractions are set to zero at the outflow. This results in a 
mesh with 3768 nodes and 3588 elements. There are 10577 equations, and the matrix had 
10 997 103 coefficients and a half-bandwidth of 521. 

Mean flow quantities are not predicted or measured with the same accuracy. The velocity 
prediction is more accurate than that of the pressure. For experiments K ~ t b ~ ~  reports that the 
order of decreasing accuracy is: axial velocity, pressure, swirl and radial velocity. 

It should also be noted that while the finite element simulations can accurately represent a free 
running propeller, the experiment must use a shaft to support and drive the propeller. A body is 
placed close downstream of the propeller to house the drive train.23 The housing affects the 
flowfield. The housing is located at 0.230 from the propeller and measurements were taken at 
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Figure 9. Grid for free shear flow near a propeller 

00250 and 0.230 downstream of the propeller. One should expect some discrepancies between 
predictions and experiments at 0.230. 

Figure 10 presents comparisons of experimental and predicted swirl and pressure. The 
agreement is excellent at x/D = 0.025 and good at x/D = 0.23. The quality of the prediction of swirl 
should be viewed as a major improvement over those of previous work.'.'' The pressure 
prediction was the first one to be produced for such problems. The agreement is good at the first 
station. The disagreement at x/D = 023 was caused by the disturbance due to the drive housing." 

Shear f low past a propeller." The previous flow was in fact axisymmetric, although a 3D 
analysis was performed. The shear flow is a problem with truly three-dimensional features. The 
flow conditions are 

U z  = 8.52-0.67~ m s-', Urn = 1 -0.1588~, 

p: = 1.77 kg m-3, D* = 0.492 m. 

To obtain the initial guess of the velocity field, an axisymmetric solution was obtained for a 
uniform flow and the velocity excess was extracted, rotated and added to the approach shear flow. 

Figure 11 compares prediction and experiments. Here again the prediction is excellent for x / D  
=0025 and good at xlD = 0.23. Detailed study and analysis of the flowfield can be found in 
Reference 1 1. 

Flow past a screen-propeller ~ o r n b i n a t i o n ~ ~  

The goal of this simulation was to study the detailed 3D flowfield produced by a propeller 
operating in a 3D approach flow representative of real flows encountered in pusher-prop 
arrangements on aircraft or underwater vehicles; see Figure 12. Details of the experiments are 
contained in Reference 2. More detailed results of the simulations can be found in Reference 24. 

The non-uniform inflow studied was generated by a varying mesh screen disc that consisted of 
one 0.38 m diameter mesh, one 0-1 3 m diameter mesh and a 30" wedge. Each screen had different 
size wires and spacing, creating screen regions with differing blockage factor. 

The screen-propeller configuration of this section represents a considerable step in complexity. 
It is similar to the wake behind a slender body with a planar appendage. The flowfield is more 
complex, requiring careful consideration of grid requirements. It was also found necessary to 
extend the turbulence model to provide acceptable prediction. Lastly, the propeller disc loading 
was higher than in the previous cases. 
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screen wake 

screen 

Figure 12. Non-uniform approach flow imposed by screen on the propeller 

Modelling of the propeller and screen disc. The propeller is represented by the same actuator 
disc model. The effects of the screen on the flow are modelled in a similar fashion except that only 
axial forces are involved since the screen only produces drag. The analysis of Reference 26 is used 
to predict the local distribution axial force over the disc area. Because of the arrangement of the 
screen, this force varies both radially and tangentially. 

Reference 26 gives a coefficient K related to the pressure drop through the screen as 

AP/ (pU2/2 )  =K(Urn/Urn)’, (1 1) 

(12) 

where U ,  is the velocity just after the screen and 

K = 0.8 S/( 1 - S)’, 

where S is the screen blockage. Finally we also have 

u, /urn = (4-K)/(4 + K ) ,  

where Uf is the velocity far behind the screen after the pressure has relaxed. Also one can show that 

Uf - urn = 2(Um - Urn) .  

Combining these relationships we obtain an expression for the pressure drop across the screen 
which is related to the axial body force required for the finite element model 

(14) AP = fx(r, 8)/AA = K(r, 8) x 112 x p x U:. 

Extension of the turbulence model. For the present flow problem it was found necessary to 
extend the basic model to cover the type of velocity profiles found behind the mesh screen. Because 
of the two mesh discs and the wedge, velocity profiles behind the screen exhibit significant 
variations. Consider a profile such as shown by the squares in Figure 13. Such a profile with visible 
plateau really has two mixing layers: an inner core up to the plateau and an outer layer between 
the plateau and the free stream. 



1580 

1.0- 

R 
X 
I 0.B- 
R 
L 

V 
E 
L 
0 0.6-  
C 
1 
T 
T 

0.4- 

1 

D. PELLETIER AND R. CAMEREO 

1.2-f 

0.24.. , - .  , , , , , , , . . I ,  , , 

l l 0 P  

LEGEND: S C R E E N  RLONE O-C+ X / O P . . O 2 5  
*-A* X / O P . . 5  

Figure 13. Mean axial velocity profiles downstream of the screen 

Figure 14. Grid for the screen-propeller combination 

If equation (6)  is used to determine the length scale, as is the practice for simpler wake and jet 
cases, too large an eddy viscosity will result. To handle such cases more adequately, the length 
scale subroutines of EDDY3D were enhanced to search for any plateau in the velocity profile. If a 
plateau is found, the half-widths are found using the value of Upla,. (x) in place of U ,  in equation 
(6); if not, equation (6) is used. All other features of the model are unchanged. 

Results for the screen-propeller combination. The grid used is shown in Figure 14. There were 38 
sections in the axial direction, 15 nodes in the radial direction and 18 nodes in the peripheral 
direction. The grid had to be refined to resolve the sharp gradients expected at the edge of the 
screen wedge. Cross-sections were clustered near the screen and around the propeller rotor 
locations. This resulted in 9072 elements and 9361 nodes. There were 26676 equations and 
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43 727 562 coefficients in the matrix with a half-bandwidth of 820. The solution required five quasi- 
Newton iterations to reach a convergence of 0.01 on the relative changes in the velocity and 
residual vectors; 327 minutes of IBM-3084 were needed to complete the simulation. The initial 
guess of solution was taken as an axisymmetric solution without swirl. In the axisymmetric model 
the wedge could not be accounted for; its effect is only felt in the 3D model. 

Care must be used in selecting this 
value. It must be small enough compared with the expected values in the main turbulent region. It 
cannot be zero or too small, because then the equations of motion approach the inviscid Euler 
equations, which cannot be handled by FIDAP. 

The predictions for the axial velocity along horizontal and vertical traverses at x / D  = 0.025 and 
x / D  = 0.5 are compared with the data in Figure 15. All of the main features of the flow are captured 
and the quantitative agreement is quite good. Experiments show considerable changes in the 
velocity profiles in going from x / D  = 0025 to 0.5,25,26 and the numerical predictions correctly 
model that behaviour as can be seen from Figure 15. Any objective judgement of these 
comparisons would have to conclude that the agreement shown here is as good as or better than is 
common for 2D turbulent free shear flows,14 no less for a truly 3D case such as here. 

Swirl predictions are compared with the experiments in Figure 16. The slight discrepancy in the 
location of the peak is the result of the simple assumption for the radial distribution of the torque. 
This particular variation was selected prior to both the experiment and the calculation based only 
on what seemed reasonable. Obviously some further adjustment of the variation would improve 
the comparison, but such a procedure was judged as not being strictly honourable and was not 
done. To put the agreement achieved here in perspective, it is a little poorer than that achieved for 
uniform and linear shear flows but much better than that found for the axisymmetric flow behind a 
slender body with a pr~peller.'.'~ 

Some comparisons of radial velocity predictions are included in Figure 17. This component is 
very small and difficult to measure; hence there is scatter in the data but the predictions have to be 
rated as being good. This is noteworthy, since other workers have often reported poor predictions 
of the radial velocity component with the elaborate inviscid codes. 

The initial value of the eddy viscosity was taken as 5 x 

CONCLUSIONS 

This work has presented a general purpose, advanced computational technique for three- 
dimensional turbulent free shear flows. The turbulence model was successfully applied, within a 
finite element framework, to several problems, demonstrating the general applicability, robustness 
and flexibility of the finite element method for solving complex three-dimensional turbulent flows. 
The main results can be summarized as follows: 

(1)  Predictions are in good agreement with experiments for the square jet problem. 
(2) The simple turbulence model presented here produced predictions for uniform and shear 

flows and the more complex upstream inflow into a propeller which show very good 
agreement with the data for the axial and swirl components of velocity. 

(3) The numerical simulations show that the propeller exerts a strong upstream influence on the 
axial and radial velocity fields and on the pressure field. Only an elliptic formulation such as 
that of FIDAP can correctly reproduce these physical effects. 

(4) The combination of the turbulence model and the Galerkin finite element algorithm of 
FIDAP is robust and stable, mostly due to the full coupling of the momentum and 
continuity equations. The complex features of the flow were captured. No gradual 
introduction of the propeller loading as the iteration proceeds is required, in contrast to 
some previous works. 
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Figure 17. Screen-propeller: radial velocity 

( 5 )  The current simple approach to interfacing the turbulence model with FIDAP is probably 
not optimal, but it proved quite flexible in following the various releases and updates of the 
package. 

Current efforts using FIDAP involve the solution of a three-dimensional body-propeller 
combination. Preliminary results are very encouraging. The presence of the hull introduces new 
complexities in the turbulence model and stronger non-linearities, making such simulations quite 
expensive. Nevertheless, such an approach seems the only viable one to obtain solutions to such 
problems. Results from these simulations are incomplete at this time and will be reported in a 
forthcoming publication. 

Another application of the FIDAP concerns the solution of the 3D turbulent flowfield near 
individual propeller blades. In a first step excellent results were obtained for the flow past a 3D 
finite flat plate.27 

NOMENCLATURE 

a exponent 
A 
a2 constant in turbulence model 
c2 constant in turbulence model 
D 
fi body force 
k turbulence kinetic energy 

cross-section of the flowfield, area of the propeller 

domain of solution and propeller diameter 
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screen coefficient 
length scale 
torque of the propeller 
radial co-ordinate 
half-width of the shear layer 
propeller radius 
radial distribution of swirl force 
screen blockage 
radial distribution of thrust 
surface traction vector 
thrust of the propeller 
centreline velocity 
velocity far behind the screen 
velocity vector 
velocity just behind the screen 
upstream approach flow 
co-ordinates 
half-width of the shear layer 
half-width of the shear layer 
density of the fluid 
turbulence viscous dissipation 
eddy viscosity 
kinematic eddy viscosity 
eddy viscosity distribution function 
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